NXN Labs的研究团队开发了一个叫做Voost的人工智能系统,旨在提升虚拟试衣和试脱技术的表现。就像是一个超级聪明的"换衣魔法师"。这个系统最神奇的地方在于,它不仅能让你"试穿"任何衣服,还能从穿着的照片中"脱下"衣服,看看原本的服装是什么样子。就好比有了一个能够随意控制时间的魔法,可以让衣服在人身上"穿上"或"脱下"。
Voost是什么
Voost 是NXN实验室推出创新的虚拟试穿和试脱模型,基于统一且可扩展的扩散 Transformer(DiT)框架开发。能同时处理虚拟试穿(try-on)和试脱(try-off)任务,生成高质量的图像结果。通过联合学习这两个任务,Voost 利用双向监督机制,使每对服装 – 人物数据能为两个方向的生成提供监督信号,显著增强了服装与身体的关系推理能力,无需依赖特定于任务的网络、辅助损失或额外的标签。

Voost的主要功能
- 双向虚拟试穿和试脱:Voost 能同时处理虚拟试穿(try-on)和试脱(try-off)任务,生成高质量的图像结果,支持用户查看穿着目标服装和脱下服装后的效果。
- 统一框架:通过单个扩散 Transformer(DiT)联合学习虚拟试穿和试脱任务,无需依赖特定任务的网络、辅助损失或额外标签,简化了模型结构并提升了效率。
- 增强关系推理:利用双向监督机制,使每对服装 – 人物数据都能为两个方向的生成提供监督信号,增强了服装与身体的关系推理能力。
- 鲁棒性提升:引入注意力温度缩放技术,增强模型对分辨率变化或掩码变化的鲁棒性;采用自纠正采样策略,通过双向一致性验证提升生成结果的稳定性和准确性。
- 高质量生成:在多个基准测试中,Voost 在服装对齐精度和视觉保真度方面均取得了最佳性能,展现出卓越的泛化能力,能生成逼真的试穿和试脱图像。
- 灵活的条件输入:支持灵活的条件输入,支持在生成方向和服装类别上进行条件化,增强模型的灵活性和适应性,适用于多种服装类别和人体姿势。
Voost的技术原理
- 统一的扩散 Transformer 框架:Voost 采用单个扩散 Transformer(DiT)联合学习虚拟试穿和试脱任务,通过双向监督机制,使每对服装 – 人物数据都能为两个方向的生成提供监督信号,增强服装与身体的关系推理能力。
- 双向监督机制:通过联合建模虚拟试穿和试脱任务,Voost 利用双向监督信号提升模型对服装与身体对应关系的理解,无需额外的标签或任务特定的网络。
- 注意力温度缩放:引入注意力温度缩放技术,调节注意力权重,增强模型对分辨率变化或掩码变化的鲁棒性,确保在不同输入条件下的稳定性和一致性。
- 自纠正采样策略:利用双向生成结果进行交叉一致性验证,通过自我校正采样策略提升生成结果的稳定性和准确性,确保生成图像的视觉一致性和逼真度。
Voost的官网地址
- 官网:https://nxnai.github.io/Voost/
Voost的应用场景
- 电商平台:为用户提供虚拟试穿功能,帮助用户更直观地查看服装上身效果,提升购物体验,减少因尺寸或款式不合适导致的退货率,增加平台的转化率。
- 时尚设计:设计师可以通过 Voost 快速预览服装设计在不同人体模型上的效果,提前评估设计的可行性,优化设计流程,降低设计成本。
- 个性化定制:为消费者提供个性化的虚拟试衣体验,消费者可以根据自己的需求选择不同的服装款式、颜色和搭配,实现定制化服务,满足个性化需求。
- 服装展示:品牌和商家可以用 Voost 在线上展示服装,通过虚拟试穿功能吸引更多用户关注,提升品牌影响力和产品曝光度。
- 虚拟试衣间:为线下服装店提供虚拟试衣解决方案,减少顾客试衣等待时间,提高试衣效率,为顾客提供更丰富的试穿体验。
本站信息分享,不代表本站观点和立场,如有侵权请联系作者立删。
b
© 版权声明
文章版权归作者所有,未经允许请勿转载。
相关文章
暂无评论...